Copied to
clipboard

G = C23.14S4order 192 = 26·3

1st non-split extension by C23 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C23.14S4, SL2(𝔽3).6D4, C222CSU2(𝔽3), Q8⋊Dic31C2, (C2×Q8).13D6, C22.38(C2×S4), Q8.1(C3⋊D4), (C22×Q8).3S3, C2.8(A4⋊D4), (C2×CSU2(𝔽3))⋊2C2, C2.6(Q8.D6), C2.5(C2×CSU2(𝔽3)), (C22×SL2(𝔽3)).3C2, (C2×SL2(𝔽3)).13C22, SmallGroup(192,978)

Series: Derived Chief Lower central Upper central

C1C2Q8C2×SL2(𝔽3) — C23.14S4
C1C2Q8SL2(𝔽3)C2×SL2(𝔽3)C2×CSU2(𝔽3) — C23.14S4
SL2(𝔽3)C2×SL2(𝔽3) — C23.14S4
C1C22C23

Generators and relations for C23.14S4
 G = < a,b,c,d,e,f,g | a2=b2=c2=f3=1, d2=e2=g2=c, gag-1=ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, bg=gb, ede-1=cd=dc, geg-1=ce=ec, cf=fc, cg=gc, fdf-1=cde, gdg-1=de, fef-1=d, gfg-1=f-1 >

Subgroups: 309 in 80 conjugacy classes, 17 normal (15 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C8, C2×C4, Q8, Q8, C23, Dic3, C2×C6, C22⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C2×Q8, C2×Q8, SL2(𝔽3), C2×Dic3, C22×C6, C22⋊C8, Q8⋊C4, C22⋊Q8, C2×Q16, C22×Q8, C6.D4, CSU2(𝔽3), C2×SL2(𝔽3), C2×SL2(𝔽3), C22⋊Q16, Q8⋊Dic3, C2×CSU2(𝔽3), C22×SL2(𝔽3), C23.14S4
Quotients: C1, C2, C22, S3, D4, D6, C3⋊D4, S4, CSU2(𝔽3), C2×S4, C2×CSU2(𝔽3), Q8.D6, A4⋊D4, C23.14S4

Character table of C23.14S4

 class 12A2B2C2D2E34A4B4C4D4E6A6B6C6D6E6F6G8A8B8C8D
 size 111122866122424888888812121212
ρ111111111111111111111111    trivial
ρ21111-1-1111-11-1-1-11-1-111-1-111    linear of order 2
ρ31111111111-1-11111111-1-1-1-1    linear of order 2
ρ41111-1-1111-1-11-1-11-1-11111-1-1    linear of order 2
ρ52222-2-2-122-20011-111-1-10000    orthogonal lifted from D6
ρ6222222-122200-1-1-1-1-1-1-10000    orthogonal lifted from S3
ρ722-2-2002-2200000200-2-20000    orthogonal lifted from D4
ρ82-22-22-2-100000-1111-1-11-22-22    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ92-22-22-2-100000-1111-1-112-22-2    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ102-22-2-22-1000001-11-11-11-222-2    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ112-22-2-22-1000001-11-11-112-2-22    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ1222-2-200-1-22000-3-3-1--3--3110000    complex lifted from C3⋊D4
ρ1322-2-200-1-22000--3--3-1-3-3110000    complex lifted from C3⋊D4
ρ143333-3-30-1-111-1000000011-1-1    orthogonal lifted from C2×S4
ρ153333330-1-1-1110000000-1-1-1-1    orthogonal lifted from S4
ρ163333-3-30-1-11-110000000-1-111    orthogonal lifted from C2×S4
ρ173333330-1-1-1-1-100000001111    orthogonal lifted from S4
ρ184-44-4-44100000-11-11-11-10000    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ194-4-4400-200000002002-20000    symplectic lifted from Q8.D6, Schur index 2
ρ204-44-44-41000001-1-1-111-10000    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ214-4-4400100000--3-3-1--3-3-110000    complex lifted from Q8.D6
ρ224-4-4400100000-3--3-1-3--3-110000    complex lifted from Q8.D6
ρ2366-6-60002-200000000000000    orthogonal lifted from A4⋊D4

Smallest permutation representation of C23.14S4
On 32 points
Generators in S32
(1 3)(2 4)(5 25)(6 26)(7 27)(8 28)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 31)(22 32)(23 29)(24 30)
(1 16)(2 13)(3 14)(4 15)(5 27)(6 28)(7 25)(8 26)(9 17)(10 18)(11 19)(12 20)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 10 3 12)(2 9 4 11)(5 30 7 32)(6 29 8 31)(13 17 15 19)(14 20 16 18)(21 26 23 28)(22 25 24 27)
(2 10 11)(4 12 9)(5 30 8)(6 7 32)(13 18 19)(15 20 17)(22 26 27)(24 28 25)
(1 21 3 23)(2 25 4 27)(5 13 7 15)(6 20 8 18)(9 22 11 24)(10 28 12 26)(14 31 16 29)(17 30 19 32)

G:=sub<Sym(32)| (1,3)(2,4)(5,25)(6,26)(7,27)(8,28)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,31)(22,32)(23,29)(24,30), (1,16)(2,13)(3,14)(4,15)(5,27)(6,28)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10,3,12)(2,9,4,11)(5,30,7,32)(6,29,8,31)(13,17,15,19)(14,20,16,18)(21,26,23,28)(22,25,24,27), (2,10,11)(4,12,9)(5,30,8)(6,7,32)(13,18,19)(15,20,17)(22,26,27)(24,28,25), (1,21,3,23)(2,25,4,27)(5,13,7,15)(6,20,8,18)(9,22,11,24)(10,28,12,26)(14,31,16,29)(17,30,19,32)>;

G:=Group( (1,3)(2,4)(5,25)(6,26)(7,27)(8,28)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,31)(22,32)(23,29)(24,30), (1,16)(2,13)(3,14)(4,15)(5,27)(6,28)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10,3,12)(2,9,4,11)(5,30,7,32)(6,29,8,31)(13,17,15,19)(14,20,16,18)(21,26,23,28)(22,25,24,27), (2,10,11)(4,12,9)(5,30,8)(6,7,32)(13,18,19)(15,20,17)(22,26,27)(24,28,25), (1,21,3,23)(2,25,4,27)(5,13,7,15)(6,20,8,18)(9,22,11,24)(10,28,12,26)(14,31,16,29)(17,30,19,32) );

G=PermutationGroup([[(1,3),(2,4),(5,25),(6,26),(7,27),(8,28),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,31),(22,32),(23,29),(24,30)], [(1,16),(2,13),(3,14),(4,15),(5,27),(6,28),(7,25),(8,26),(9,17),(10,18),(11,19),(12,20),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,10,3,12),(2,9,4,11),(5,30,7,32),(6,29,8,31),(13,17,15,19),(14,20,16,18),(21,26,23,28),(22,25,24,27)], [(2,10,11),(4,12,9),(5,30,8),(6,7,32),(13,18,19),(15,20,17),(22,26,27),(24,28,25)], [(1,21,3,23),(2,25,4,27),(5,13,7,15),(6,20,8,18),(9,22,11,24),(10,28,12,26),(14,31,16,29),(17,30,19,32)]])

Matrix representation of C23.14S4 in GL4(𝔽73) generated by

1000
07200
0010
0001
,
72000
07200
0010
0001
,
1000
0100
00720
00072
,
1000
0100
0001
00720
,
1000
0100
006564
00648
,
1000
0100
0080
00164
,
0100
1000
007134
0022
G:=sub<GL(4,GF(73))| [1,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[72,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,0,72,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,65,64,0,0,64,8],[1,0,0,0,0,1,0,0,0,0,8,1,0,0,0,64],[0,1,0,0,1,0,0,0,0,0,71,2,0,0,34,2] >;

C23.14S4 in GAP, Magma, Sage, TeX

C_2^3._{14}S_4
% in TeX

G:=Group("C2^3.14S4");
// GroupNames label

G:=SmallGroup(192,978);
// by ID

G=gap.SmallGroup(192,978);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,672,85,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^3=1,d^2=e^2=g^2=c,g*a*g^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,e*d*e^-1=c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,f*d*f^-1=c*d*e,g*d*g^-1=d*e,f*e*f^-1=d,g*f*g^-1=f^-1>;
// generators/relations

Export

Character table of C23.14S4 in TeX

׿
×
𝔽